Order of Operations (A)

Name:
Date:
Solve each expression using the correct order of operations.
$(-5)^{2}-2 \times(-9)+6$
$3 \times 10+8-4^{2}$
$(-9)-(-8)+2 \times 4^{2}$
$(-3)^{3}-2+8 \div(-8)$
$8 \div(-4) \times(-6)^{2}+7$
$4 \times(-8)+6-(-2)^{3}$
$10 \times 5-(-6)^{2}+(-8)$
$(-5)^{2} \times 3 \div 5+9$
$(10 \div(-5)-(-2)) \times(-3)^{3}$
$4 \times(-6) \div 8+3^{3}$

Order of Operations (A) Answers

Name: \qquad
Solve each expression using the correct order of operations.

$$
\begin{aligned}
& \frac{(-5)^{2}-2 \times(-9)+6}{=25-2 \times(-9)}+6 \\
& =25-(-18)+6 \\
& =\underline{43+6} \\
& =49
\end{aligned}
$$

$$
(-9)-(-8)+2 \times \underline{4}^{2}
$$

$$
=(-9)-(-8)+\underline{2 \times 16}
$$

$$
=\underline{(-9)-(-8)}+32
$$

$$
=\underline{(-1)+32}
$$

$$
=31
$$

$$
8 \div(-4) \times \underline{(-6)^{2}}+7
$$

$$
=\underline{8 \div(-4)} \times 36+7
$$

$$
=\overline{(-2) \times 36}+7
$$

$$
=\underline{(-72)+7}
$$

$$
=-65
$$

$$
10 \times 5-(-6)^{2}+(-8)
$$

$$
=\underline{10 \times 5}-36+(-8)
$$

$$
=\underline{50-36}+(-8)
$$

$$
=\underline{14+(-8)}
$$

$$
=6
$$

$$
(\underline{10 \div(-5)}-(-2)) \times(-3)^{3}
$$

$$
=(\underline{(-2)-(-2)}) \times(-3)^{3}
$$

$$
=0 \times \underline{(-3)^{3}}
$$

$$
=\underline{0 \times(-27)}
$$

$$
=0
$$

$$
\begin{aligned}
& 3 \times 10+8-\underline{4^{2}} \\
& =\underline{3 \times 10}+8-16 \\
& =\underline{30+8}-16 \\
& =\underline{38-16} \\
& =22
\end{aligned}
$$

$$
(-3)^{3}-2+8 \div(-8)
$$

$$
=(-27)-2+8 \div(-8)
$$

$$
=\underline{(-27)-2}+\overline{(-1)}
$$

$$
=\overline{(-29)+(-1)}
$$

$$
=-30
$$

$$
4 \times(-8)+6-\underline{(-2)^{3}}
$$

$$
=\underline{4 \times(-8)}+6-(-8)
$$

$$
=\overline{(-32)+6}-(-8)
$$

$$
=\overline{(-26)-(-8)}
$$

$$
=-18
$$

$$
(-5)^{2} \times 3 \div 5+9
$$

$$
=\underline{25} \times 3 \div 5+9
$$

$$
=\underline{75 \div 5}+9
$$

$$
=\underline{15+9}
$$

$$
=24
$$

$$
\begin{aligned}
& 4 \times(-6) \div 8+\underline{3}^{3} \\
& =4 \times(-6) \div 8+27 \\
& =\underline{(-24) \div 8}+27 \\
& =\underline{(-3)+27} \\
& =24
\end{aligned}
$$

Date: \qquad

