Evaluating Algebraic Expressions (H)

Instructions: Evaluate each algebraic expression with the given values.

$$(x + y)^2$$
; where x = 1, and y = 1

$$p^2 + m$$
; where $m = 5$, and $p = 6$

$$(z - x)^2$$
; where x = 5, and z = 6

$$n(n + p)$$
; where $n = 2$, and $p = 3$

$$x - (y - y)$$
; where $x = 4$, and $y = 5$

$$(m + p) \div 3$$
; where $m = 4$, and $p = 5$

$$(b - a)^2$$
; where a = 2, and b = 6

$$q(p + p)$$
; where $p = 1$, and $q = 5$

$$xy \div 4$$
; where $x = 2$, and $y = 4$

$$(b-a) \div 3$$
; where $a = 3$, and $b = 6$

$$jh \div 6$$
; where $h = 6$, and $j = 3$

Evaluating Algebraic Expressions (H) Answers

Instructions: Evaluate each algebraic expression with the given values.

$$(x + y)^2$$
; where $x = 1$, and $y = 1$
 $p^2 + m$; where $m = 5$, and $p = 6$
 41
 $(z - x)^2$; where $x = 5$, and $z = 6$
 1
 $n(n + p)$; where $n = 2$, and $p = 3$
 10
 $x - (y - y)$; where $x = 4$, and $y = 5$
 4
 $(m + p) \div 3$; where $m = 4$, and $p = 5$
 3
 $(b - a)^2$; where $a = 2$, and $b = 6$
 16
 $q(p + p)$; where $p = 1$, and $q = 5$
 10
 $xy \div 4$; where $x = 2$, and $y = 4$
 2
 $(b - a) \div 3$; where $a = 3$, and $b = 6$
 1
 1
 1
 1
 1
 2
 1
 3
 1
 1
 2
 3
 3