Order of Operations with Decimals (C)

Name: \qquad Date:
Solve each expression using the correct order of operations.
$(-5.7) \times\left(2.9-2.3+(-2.8)^{2} \div(-1.6)\right)$
$2.2 \times((-2.7)+7.9-8.7)^{2} \div 1.4$
$\left((-8.8) \div 8.8-(-6.6)^{2}\right) \times(5.3+(-4.8))$
$(0.4 \times(-1.5)) \div(-0.5)+7.8-(6.2)^{2}$
$((-5.1) \div(-0.6)) \times 1.5-1.4+(-0.7)^{2} \quad\left(6.2 \times 8.7+6.6-(1.3)^{2}\right) \div(-2.5)$

Order of Operations with Decimals (C) Answers

Name: \qquad Date: \qquad
Solve each expression using the correct order of operations.

$$
\begin{array}{ll}
(-5.7) \times\left(2.9-2.3+\underline{(-2.8)^{2}} \div(-1.6)\right) & 2.2 \times(\underline{(-2.7)+7.9}-8.7)^{2} \div 1.4 \\
=(-5.7) \times(2.9-2.3+\underline{7.84 \div(-1.6)}) & =2.2 \times(5.2-8.7)^{2} \div 1.4 \\
=(-5.7) \times(\underline{2.9-2.3}+(-4.9)) & =2.2 \times \underline{(-3.5)^{2} \div 1.4} \\
=(-5.7) \times(\underline{0.6+(-4.9)}) & =2.2 \times 12.25 \div 1.4 \\
=\underline{(-5.7) \times(-4.3)} & =\underline{26.95 \div 1.4} \\
\hline 151 & =19.25
\end{array}
$$

$\left((-8.8) \div 8.8-\underline{(-6.6)^{2}}\right) \times(5.3+(-4.8))$
$(\underline{0.4 \times(-1.5)}) \div(-0.5)+7.8-(6.2)^{2}$
$=((-8.8) \div 8.8-43.56) \times(5.3+(-4.8))$
$=(-0.6) \div(-0.5)+7.8-\underline{(6.2)^{2}}$
$=((-1)-43.56) \times(5.3+(-4.8))$
$=(-0.6) \div(-0.5)+7.8-38.44$
$=1.2+7.8-38.44$
$=(-44.56) \times(5.3+(-4.8))$
$=9-38.44$
$=\underline{(-44.56) \times 0.5}$
$=-29.44$

$$
\begin{aligned}
& (\underline{(-5.1) \div(-0.6)}) \times 1.5-1.4+(-0.7)^{2} \\
& =8.5 \times 1.5-1.4+\underline{(-0.7)^{2}} \\
& =\underline{8.5 \times 1.5-1.4+0.49} \\
& =\underline{12.75-1.4}+0.49 \\
& =\underline{11.35+0.49} \\
& =\underline{11.84}
\end{aligned}
$$

$$
\begin{aligned}
& \left(6.2 \times 8.7+6.6-\underline{(1.3)^{2}}\right) \div(-2.5) \\
& =(\underline{6.2 \times 8.7}+6.6-1.69) \div(-2.5) \\
& =(\underline{53.94+6.6}-1.69) \div(-2.5) \\
& =(\underline{60.54-1.69}) \div(-2.5) \\
& =\underline{58.85 \div(-2.5)} \\
& =\underline{-23.54}
\end{aligned}
$$

