Order of Operations with Decimals (H)

Name: \qquad Date:
Solve each expression using the correct order of operations.
$\left((-1.6)^{2}-1.8\right) \div(-0.4) \times(-8.5)$

$$
(-6.9)^{2}+7.5 \times(2.9-(-3.2))
$$

$(8.6-(-2.6)) \times(-4.7)+(-3.3)^{2}$
$(9.6-6.9) \times(-1.7)+(6.2)^{2}$
$(-3.7) \times((-7.3)+(-1.6)-(-6.9))^{2}$
$((-5.5)+(-3.7)-7.8) \times(-0.3)^{2}$
$(-1.5) \times\left((-9.6)+(-3.1)-(1.8)^{2}\right) \quad 0.4 \times((1.4+(-1.4)) \div(-9.4))^{3}$

Order of Operations with Decimals (H) Answers

Name: \qquad Date: \qquad
Solve each expression using the correct order of operations.

$$
\begin{aligned}
& \left((-1.6)^{2}-1.8\right) \div(-0.4) \times(-8.5) \\
& =(\underline{2.56-1.8)} \div(-0.4) \times(-8.5) \\
& =0.76 \div(-0.4) \times(-8.5) \\
& =(-1.9) \times(-8.5) \\
& =16.15
\end{aligned}
$$

$$
\begin{aligned}
& (-6.9)^{2}+7.5 \times(\underline{2.9-(-3.2)}) \\
& =\underline{(-6.9)^{2}+7.5 \times 6.1} \\
& =47.61+\underline{7.5 \times 6.1} \\
& =47.61+45.75 \\
& =93.36
\end{aligned}
$$

$$
\begin{aligned}
& (-3.7) \times(\underline{(-7.3)+(-1.6)}-(-6.9))^{2} \\
& =(-3.7) \times(\underline{(-8.9)-(-6.9)})^{2} \\
& =(-3.7) \times \underline{(-2)^{2}} \\
& =\underline{(-3.7) \times 4} \\
& =-14.8
\end{aligned}
$$

$$
(-1.5) \times\left((-9.6)+(-3.1)-\underline{(1.8)^{2}}\right)
$$

$$
=(-1.5) \times(\underline{(-9.6)+(-3.1)}-3.24)
$$

$$
=(-1.5) \times(\underline{(-12.7)-3.24})
$$

$$
=\underline{(-1.5) \times(-15.94)}
$$

$$
=23.91
$$

$$
\begin{aligned}
& (9.6-6.9) \times(-1.7)+(6.2)^{2} \\
& =2.7 \times(-1.7)+\underline{(6.2)^{2}} \\
& =2.7 \times(-1.7)+38.44 \\
& =\underline{(-4.59)+38.44} \\
& =33.85
\end{aligned}
$$

$$
(\underline{(-5.5)+(-3.7)}-7.8) \times(-0.3)^{2}
$$

$$
=(\underline{(-9.2)-7.8}) \times(-0.3)^{2}
$$

$$
=(-17) \times(-0.3)^{2}
$$

$$
=\underline{(-17) \times 0.09}
$$

$$
=-1.53
$$

$$
0.4 \times((\underline{1.4+(-1.4)}) \div(-9.4))^{3}
$$

$$
=0.4 \times(\underline{0 \div(-9.4)})^{3}
$$

$$
=0.4 \times \underline{0^{3}}
$$

$$
=\underline{0.4 \times 0}
$$

$$
=0
$$

