Order of Operations with Decimals (J)

Name: \qquad Date: \qquad
Solve each expression using the correct order of operations.

$$
\left((-7.2)+(-3.9)-(-2.5)^{2}\right) \times(-5.2) \quad((-8.1)-(-9.1))^{3} \times 0.2+5.1
$$

$7.4 \times\left(0.9+8.7-(-2.5)^{2}\right)$
$(6.3 \times 0.4) \div(-0.2)-(2.1)^{2}$

$$
\left(1.5-(-2.7)^{2}\right) \times(8.3+(-5.3))
$$

$\left(8.3+(-4.4)^{2}\right) \div(-0.5)-(-4.6)$

$$
((-0.8)+(-3.9)-(-1.1))^{2} \times 2.5
$$

Order of Operations with Decimals (J) Answers

Name: \qquad Date: \qquad
Solve each expression using the correct order of operations.

$$
\begin{array}{ll}
\left((-7.2)+(-3.9)-\underline{(-2.5)^{2}}\right) \times(-5.2) & (\underline{(-8.1)-(-9.1)})^{3} \times 0.2+5.1 \\
=(\underline{(-7.2)+(-3.9)}-6.25) \times(-5.2) & =\underline{1^{3}} \times 0.2+5.1 \\
=(\underline{(-11.1)-6.25}) \times(-5.2) & =\underline{1 \times 0.2}+5.1 \\
=\underline{(-17.35) \times(-5.2)} & =5.3 \\
=\underline{90.22} & \\
(-3.5) \times\left(2.5-(-6.1)+\underline{(2.6)^{2}}\right) & 7.4 \times\left(0.9+8.7-\underline{\left.(-2.5)^{2}\right)}\right. \\
=(-3.5) \times(\underline{2.5-(-6.1)}+6.76) & =7.4 \times(\underline{0.9+8.7}-6.25) \\
=(-3.5) \times(\underline{8.6+6.76}) & =7.4 \times(\underline{9.6-6.25}) \\
=(-3.5) \times 15.36 & =\underline{7.4 \times 3.35} \\
=\underline{-53.76} & =24.79
\end{array}
$$

$$
\begin{aligned}
& (6.3 \times 0.4) \div(-0.2)-(2.1)^{2} \\
& =2.52 \div(-0.2)-\underline{(2.1)^{2}} \\
& =\underline{2.52 \div(-0.2)-4.41} \\
& =\underline{(-12.6)-4.41} \\
& =\underline{-17.01}
\end{aligned}
$$

$$
\begin{aligned}
& \left(1.5-\underline{(-2.7)^{2}}\right) \times(8.3+(-5.3)) \\
& =(1.5-7.29) \times(8.3+(-5.3)) \\
& =(-5.79) \times(\underline{8.3+(-5.3)}) \\
& =\underline{(-5.79) \times 3} \\
& =\underline{-17.37}
\end{aligned}
$$

$$
\begin{aligned}
& \left(8.3+\underline{\left.(-4.4)^{2}\right) \div(-0.5)-(-4.6)}\right. \\
& =(8.3+19.36) \div(-0.5)-(-4.6) \\
& =\underline{27.66 \div(-0.5)-(-4.6)} \\
& =\underline{(-55.32)-(-4.6)} \\
& =-50.72
\end{aligned}
$$

