Order of Operations (C)

Name: \qquad Date:
Solve each expression using the correct order of operations.
$\left(4^{2}-7+(-9)\right)^{3} \div(2 \times 8)$

$$
\left((-2)-2^{2}\right) \times((-3)+(-5)) \div((-9)+6)
$$

$(10 \div((-7)-(-8))) \times(-10)+8^{2}+(-5) \quad(((-9)+9) \times 3) \div(8-5)^{3} \div 4$
$(6+(-5)) \div(8-7) \times(-3)+(-9)^{2}$

$$
\left((-6) \times(10-2+(-8))^{3}\right) \div 8^{2}
$$

Order of Operations (C) Answers

Name: \qquad Date: \qquad
Solve each expression using the correct order of operations.

$$
\begin{aligned}
& \left(\underline{4^{2}}-7+(-9)\right)^{3} \div(2 \times 8) \\
& =(\underline{16-7}+(-9))^{3} \div(2 \times 8) \\
& =(\underline{9+(-9)})^{3} \div(2 \times 8) \\
& =0^{3} \div(2 \times 8) \\
& =\underline{0^{3}} \div 16 \\
& =\underline{0} \div 16 \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& \left((-2)-{\underline{2^{2}}}^{\prime} \times((-3)+(-5)) \div((-9)+6)\right. \\
& =(\underline{(-2)-4}) \times((-3)+(-5)) \div((-9)+6) \\
& =(-6) \times(\underline{(-3)+(-5)}) \div((-9)+6) \\
& =(-6) \times(-8) \div(\underline{(-9)+6}) \\
& =(-6) \times(-8) \div(-3) \\
& =\underline{48 \div(-3)} \\
& =-16
\end{aligned}
$$

$$
\begin{aligned}
& (10 \div(\underline{(-7)-(-8)})) \times(-10)+8^{2}+(-5) \\
& =\left(\underline{10 \div 1) \times(-10)+8^{2}+(-5)}\right. \\
& =10 \times(-10)+8^{2}+(-5) \\
& =10 \times(-10)+64+(-5) \\
& =(-100)+64+(-5) \\
& =(-36)+(-5) \\
& =-41
\end{aligned}
$$

$$
((\underline{(-9)+9}) \times 3) \div(8-5)^{3} \div 4
$$

$$
\begin{aligned}
& =(\underline{0 \times 3}) \div(8-5)^{3} \div 4 \\
& =0 \div(\underline{8-5})^{3} \div 4 \\
& =0 \div \underline{3^{3}} \div 4 \\
& =0 \div 27 \div 4 \\
& =\underline{0 \div 4} \\
& =0
\end{aligned}
$$

$(\underline{6+(-5)}) \div(8-7) \times(-3)+(-9)^{2}$
$=1 \div(8-7) \times(-3)+(-9)^{2}$
$=1 \div 1 \times(-3)+(-9)^{2}$
$=1 \div 1 \times(-3)+81$
$=\underline{1 \times(-3)}+81$
$=\underline{(-3)+81}$
$=78$

$$
\begin{aligned}
& \left((-6) \times(\underline{10-2}+(-8))^{3}\right) \div 8^{2} \\
& =\left((-6) \times(\underline{8+(-8)})^{3}\right) \div 8^{2} \\
& =\left((-6) \times \underline{0^{3}}\right) \div 8^{2} \\
& =(\underline{(-6) \times 0}) \div 8^{2} \\
& =0 \div \underline{8^{2}} \\
& =\underline{0} \div 64 \\
& =0
\end{aligned}
$$

