Surface Area and Volume of Spheres (A)

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

2.

3.

Surface Area and Volume of Spheres (A) Answers

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

Surface Area: $45,238.9 \,\mathrm{km}^2$ Volume: $904,778.7 \,\mathrm{km}^3$ 2.

Surface Area: $107,149.37\,\mathrm{ft^2}$ Volume: $3,298,057.48\,\mathrm{ft^3}$

3.

Surface Area: $11,310 \text{ yd}^2$ Volume: $113,097 \text{ yd}^3$ 4.

Surface Area: $41,345.49 \text{ nm}^2$ Volume: $790,525.78 \text{ nm}^3$

Surface Area and Volume of Spheres (B)

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

2.

3.

Surface Area and Volume of Spheres (B) Answers

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

Surface Area: $45,239 \,\mathrm{AU^2}$ Volume: $904,779 \,\mathrm{AU^3}$ 2.

Surface Area: $45,722.77 \,\mathrm{nm}^2$ Volume: $919,332.49 \,\mathrm{nm}^3$

3.

Surface Area: $51,472 \,\mathrm{nm}^2$ Volume: $1,098,066 \,\mathrm{nm}^3$ 4.

Surface Area: $50,990.44\,\mathrm{AU^2}$ Volume: $1,082,696.93\,\mathrm{AU^3}$

Surface Area and Volume of Spheres (C)

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

2.

3.

Surface Area and Volume of Spheres (C) Answers

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

2.

Surface Area: $20,106 \,\mathrm{mi}^2$ Volume: $268,083 \,\mathrm{mi}^3$

Surface Area: $119,998.77 \,\mathrm{m}^2$ Volume: $3,908,759.81 \,\mathrm{m}^3$

3.

Surface Area: $45,238.9 \text{ yd}^2$ Volume: $904,778.7 \text{ yd}^3$ 4.

Surface Area: $148,753.66 \, \mathrm{cm}^2$ Volume: $5,394,799.34 \, \mathrm{cm}^3$

Surface Area and Volume of Spheres (D)

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

2.

3.

Surface Area and Volume of Spheres (D) Answers

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

Surface Area: $107,288.7 \,\mathrm{AU^2}$ Volume: $3,304,490.6 \,\mathrm{AU^3}$ 2.

Surface Area: $22,167 \,\mathrm{in}^2$ Volume: $310,339 \,\mathrm{in}^3$

3.

Surface Area: $24,328 \,\mathrm{in}^2$ Volume: $356,818 \,\mathrm{in}^3$ 4.

Surface Area: $35,033.0 \, \text{nm}^2$ Volume: $616,581.3 \, \text{nm}^3$

Surface Area and Volume of Spheres (E)

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

2.

3.

Surface Area and Volume of Spheres (E) Answers

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

Surface Area: $14,527 \,\mathrm{mm}^2$ Volume: $164,636 \,\mathrm{mm}^3$ 2.

Surface Area: $47,066.6\,\mathrm{ft}^2$ Volume: $960,158.4\,\mathrm{ft}^3$

3.

Surface Area: $29,864.77\,\mathrm{ft}^2$ Volume: $485,302.43\,\mathrm{ft}^3$ 4.

Surface Area: $15,747.67 \, \text{in}^2$ Volume: $185,822.54 \, \text{in}^3$

Surface Area and Volume of Spheres (F)

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

2.

3.

Surface Area and Volume of Spheres (F) Answers

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

Surface Area: $127,682.37 \text{ yd}^2$ Volume: $4,290,127.56 \text{ yd}^3$ 2.

Surface Area: $54,540.24 \, \text{nm}^2$ Volume: $1,197,703.67 \, \text{nm}^3$

3.

Surface Area: $19,113.4\,\mathrm{mm}^2$ Volume: $248,474.8\,\mathrm{mm}^3$ 4.

Surface Area: $42,273 \,\mathrm{km}^2$ Volume: $817,283 \,\mathrm{km}^3$

Surface Area and Volume of Spheres (G)

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

2.

3.

Surface Area and Volume of Spheres (G) Answers

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

Surface Area: $108,686.5 \,\mathrm{km}^2$ Volume: $3,369,282.7 \,\mathrm{km}^3$ 2.

Surface Area: $177,115.94\,\mathrm{AU^2}$ Volume: $7,009,068.00\,\mathrm{AU^3}$

3.

Surface Area: $82,448 \text{ yd}^2$ Volume: $2,226,095 \text{ yd}^3$ 4.

Surface Area: $11,310\,\mathrm{ft}^2$ Volume: $113,097\,\mathrm{ft}^3$

Surface Area and Volume of Spheres (H)

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

2.

3.

Surface Area and Volume of Spheres (H) Answers

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

Surface Area: $99,762.0 \text{ yd}^2$ Volume: $2,962,932.3 \text{ yd}^3$ 2.

Surface Area: $65,144.1 \,\mathrm{m}^2$ Volume: $1,563,457.6 \,\mathrm{m}^3$

3.

Surface Area: $42,741.02 \text{ yd}^2$ Volume: $830,885.45 \text{ yd}^3$ 4.

Surface Area: $31,416 \,\mathrm{nm}^2$ Volume: $523,599 \,\mathrm{nm}^3$

Surface Area and Volume of Spheres (I)

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

2.

3.

Surface Area and Volume of Spheres (I) Answers

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

2.

Surface Area: $37,462.4 \,\mathrm{km}^2$ Volume: $681,815.0 \,\mathrm{km}^3$

Surface Area: $177,354.7 \text{ m}^2$ Volume: $7,023,246.8 \text{ m}^3$

3.

Surface Area: $45,238.9\,\mathrm{AU^2}$ Volume: $904,778.7\,\mathrm{AU^3}$ 4.

Surface Area: $32,685 \,\mathrm{nm}^2$ Volume: $555,647 \,\mathrm{nm}^3$

Surface Area and Volume of Spheres (J)

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

2.

3.

Surface Area and Volume of Spheres (J) Answers

Calculate the surface area and volume for each sphere.

Surface Area =
$$4\pi r^2$$
 Volume = $\frac{4}{3}\pi r^3$

1.

2.

Surface Area: $22,167 \,\mathrm{mm}^2$ Volume: $310,339 \,\mathrm{mm}^3$

Surface Area: $118,725.1 \,\mathrm{mi}^2$ Volume: $3,846,691.9 \,\mathrm{mi}^3$

3.

Surface Area: $43,981.11 \text{ cm}^2$ Volume: $867,307.51 \text{ cm}^3$ 4.

Surface Area: $87,469.04 \text{ mi}^2$ Volume: $2,432,513.95 \text{ mi}^3$