Order of Operations (C)

Name: \qquad Date:
Solve each expression using the correct order of operations.
$(4 \times 6+7) \times 3+2$
$(8+3 \times 2+7) \times 4$
$(3+10) \times 5+8 \times 4$
$2 \times(6+7+3 \times 4)$
$9+4 \times(2 \times 8+5)$
$2 \times(9+7 \times 3+10)$
$(3 \times 5+7) \times 4+2$
$7+3 \times(8+2 \times 6)$
$2 \times(7+3 \times 8+4)$
$(4 \times 8+3) \times 2+5$

Order of Operations (C)

Name: \qquad Date: \qquad
Solve each expression using the correct order of operations.

$$
\begin{aligned}
& (\underline{4 \times 6}+7) \times 3+2 \\
& =(\underline{24+7}) \times 3+2 \\
& =\underline{31 \times 3}+2 \\
& =\underline{93+2} \\
& =95
\end{aligned}
$$

$(\underline{3+10}) \times 5+8 \times 4$

$$
=\underline{13 \times 5}+8 \times 4
$$

$$
=65+\underline{8 \times 4}
$$

$$
=\underline{65+32}
$$

$$
=97
$$

$9+4 \times(\underline{2 \times 8}+5)$
$=9+4 \times(\underline{16+5})$
$=9+\underline{4 \times 21}$
$=\underline{9+84}$

$$
=93
$$

$(\underline{3 \times 5}+7) \times 4+2$
$=(\underline{15+7}) \times 4+2$
$=\underline{22 \times 4}+2$
$=\underline{88+2}$
$=90$
$2 \times(7+\underline{3 \times 8}+4)$
$=2 \times(7+24+4)$
$=2 \times(\underline{31+4})$
$=\underline{2 \times 35}$
$=70$

$$
\begin{aligned}
& (8+\underline{3 \times 2}+7) \times 4 \\
& =(\underline{8+6}+7) \times 4 \\
& =(\underline{14+7}) \times 4 \\
& =\underline{21 \times 4} \\
& =84
\end{aligned}
$$

$$
2 \times(6+7+\underline{3 \times 4})
$$

$$
=2 \times(\underline{6+7}+12)
$$

$$
=2 \times(\underline{13+12})
$$

$$
=\underline{2 \times 25}
$$

$$
=50
$$

$$
2 \times(9+\underline{7 \times 3}+10)
$$

$$
=2 \times(\underline{9+21}+10)
$$

$$
=2 \times(\underline{30+10})
$$

$$
=\underline{2 \times 40}
$$

$$
=80
$$

$$
7+3 \times(8+\underline{2 \times 6})
$$

$$
=7+3 \times(\underline{8+12})
$$

$$
=7+\underline{3 \times 20}
$$

$$
=\underline{7+60}
$$

$$
=67
$$

$$
\begin{aligned}
& (\underline{4 \times 8}+3) \times 2+5 \\
& =(\underline{32+3}) \times 2+5 \\
& =\underline{35 \times 2}+5 \\
& =\underline{70+5} \\
& =75
\end{aligned}
$$

