Order of Operations (D)

Name:
Date:
Solve each expression using the correct order of operations.
$8+9 \div(7-4) \times 10$
$((10+5) \div 3) \times 9-7$
$(8 \times 10+6-9) \div 7$
$5 \times(3+8-10 \div 2)$
$4+9 \times(2 \div(8-7))$
$3 \times 10 \div(7+2-8)$
$((9-8+7) \times 4) \div 2$
$((10-8+7) \div 9) \times 5$
$(3+9) \div 2 \times 6-10$
$(5 \times 8) \div(3+10-9)$

Order of Operations (D)

Name: \qquad Date: \qquad
Solve each expression using the correct order of operations.

$$
\begin{aligned}
& 8+9 \div(\underline{7-4}) \times 10 \\
& =8+\underline{9 \div 3} \times 10 \\
& =8+\underline{3 \times 10} \\
& =8+30 \\
& =38
\end{aligned}
$$

$$
(8 \times 10+6-9) \div 7
$$

$$
=(\underline{80+6}-9) \div 7
$$

$$
=(\underline{86-9}) \div 7
$$

$$
=\underline{77 \div 7}
$$

$$
=11
$$

$$
4+9 \times(2 \div(8-7))
$$

$$
=4+9 \times(2 \div 1)
$$

$$
=4+\underline{9 \times 2}
$$

$$
=\underline{4+18}
$$

$$
=22
$$

$$
((\underline{9-8}+7) \times 4) \div 2
$$

$$
=((\underline{1+7}) \times 4) \div 2
$$

$$
=(\underline{8 \times 4}) \div 2
$$

$$
=\underline{32 \div 2}
$$

$$
=16
$$

$$
(3+9) \div 2 \times 6-10
$$

$$
=\underline{12 \div 2} \times 6-10
$$

$$
=\underline{6 \times 6}-10
$$

$$
=\underline{36-10}
$$

$$
=26
$$

$$
\begin{aligned}
& ((\underline{10+5)} \div 3) \times 9-7 \\
& =(\underline{15 \div 3}) \times 9-7 \\
& =\underline{5 \times 9}-7 \\
& =\underline{45-7} \\
& =38
\end{aligned}
$$

$$
5 \times(3+8-10 \div 2)
$$

$$
=5 \times(\underline{3+8}-5)
$$

$$
=5 \times(\underline{11-5})
$$

$$
=\underline{5 \times 6}
$$

$$
=30
$$

$$
3 \times 10 \div(\underline{7+2}-8)
$$

$$
=3 \times 10 \div(\underline{9-8})
$$

$$
=\underline{3 \times 10} \div 1
$$

$$
=\underline{30 \div 1}
$$

$$
=30
$$

$$
((\underline{10-8}+7) \div 9) \times 5
$$

$$
=((\underline{2+7}) \div 9) \times 5
$$

$$
=(\underline{9} \div 9) \times 5
$$

$$
=\underline{1 \times 5}
$$

$$
=5
$$

$$
\begin{aligned}
& (\underline{5 \times 8}) \div(3+10-9) \\
& =40 \div(3+10-9) \\
& =40 \div(\underline{13-9}) \\
& =40 \div 4 \\
& =10
\end{aligned}
$$

