Order of Operations with Fractions (I)

Name:
Date: \qquad
Simplify each expression using the correct order of operations.
$\left(\frac{3}{5} \times\left(\frac{1}{2}\right)^{2}\right) \div\left(\frac{2}{9}+\frac{1}{5}\right)$

$$
\left(\frac{1}{6}+\frac{1}{3}\right) \times\left(\left(\frac{8}{9}\right)^{2} \div \frac{7}{9}\right)
$$

$$
\frac{2}{5} \div\left(\frac{1}{9}+\frac{1}{4}-\left(\frac{1}{2}\right)^{2}\right) \quad\left(\left(\frac{5}{9}\right)^{2} \div\left(\frac{7}{9}-\frac{1}{3}\right)\right) \times \frac{3}{4}
$$

Order of Operations with Fractions (I)

Name:
Date: \qquad
Simplify each expression using the correct order of operations.

$$
\begin{array}{ll}
\left(\begin{array}{ll}
\left.\frac{3}{5} \times\left(\frac{1}{2}\right)^{2}\right) \div\left(\frac{2}{9}+\frac{1}{5}\right) & \left(\frac{1}{6}+\frac{1}{3}\right) \times\left(\left(\frac{8}{9}\right)^{2} \div \frac{7}{9}\right) \\
=\left(\frac{3}{5} \times \frac{1}{4}\right) \div\left(\frac{2}{9}+\frac{1}{5}\right) & =\frac{1}{2} \times\left(\underline{\left(\frac{8}{9}\right)^{2}} \div \frac{7}{9}\right) \\
=\frac{3}{20} \div\left(\frac{2}{9}+\frac{1}{5}\right) & =\frac{1}{2} \times\left(\underline{\frac{64}{81} \div \frac{7}{9}}\right) \\
=\frac{3}{20} \div \frac{19}{45} & =\frac{1}{2} \times \frac{64}{63} \\
=\frac{27}{76} & =\frac{32}{63}
\end{array}\right.
\end{array}
$$

$$
\begin{aligned}
& \frac{2}{5} \div\left(\frac{1}{9}+\frac{1}{4}-\underline{\left(\frac{1}{2}\right)^{2}}\right) \\
& =\frac{2}{5} \div\left(\frac{1}{9}+\frac{1}{4}-\frac{1}{4}\right) \\
& =\frac{2}{5} \div\left(\underline{\left.\frac{13}{36}-\frac{1}{4}\right)}\right. \\
& =\frac{2}{5} \div \frac{1}{9} \\
& =\frac{18}{5} \\
& =3 \frac{3}{5}
\end{aligned}
$$

$$
\left(\left(\frac{5}{9}\right)^{2} \div\left(\frac{7}{9}-\frac{1}{3}\right)\right) \times \frac{3}{4}
$$

$$
=\left(\underline{\left(\frac{5}{9}\right)^{2}} \div \frac{4}{9}\right) \times \frac{3}{4}
$$

$$
=\left(\frac{25}{81} \div \frac{4}{9}\right) \times \frac{3}{4}
$$

$$
=\frac{25}{36} \times \frac{3}{4}
$$

